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Summary 

Infrared intensities axe recorded for the vs ring-stretching band near 1600 
cm-l of a series of meter- and para-substituted ArCH,SiMe, and ArCH,SnMe, 
compounds. The substituents CH, SiMe, and CH, SnMe, are confirmed as reso- 
nance donors, with (T c of -0.20 and -0.26 respectively. 

Introduction 

The CH,MR, groups (M = Si, Sn) show strong electron release [2,3 ] as 
demonstrated by spectroscopic, reactivity, or equilibrimn measurements or by 
the determination df l gF NMR shifts [4] . . However, these methods either 
utilise another substituent as a probe which may disturb [5] the electronic 
effect of the CH,MR, group, or involve excited or transition states. We have 
therefore applied our infrared spectral [S] method to these above groups. 

Our previously observed infrared intensities of the vs bands (Ye s in Herz: 
bergs notation) of the corresponding monosubstituted benzenes and the earlier 
derived 161 eqn. (l), had given 0 E 
and CH, SnMe, respectively 143. 

values of -+ 0.20 and +- 0.26 for CH,SiMe, 

A m_ = 176OO(o; )2 + 100 (1) 

* This paper is part XXX in our series: Infrared i$ensitics as a measure of int+moIecular i&t?, 
actions. For part XXIX see ref. i. 
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Experimental. 

@ock sampIes of previously reported [2,6] XC6 H* CHs MMej (M = Si, Sn)-, 
compounds were red;st.ill&, and had the following properties: [X, -M, b-p. 
(” C/mmHg), nzs] : H, Si, 66/.10, 1.4910; p-Me, Si, 82/&O, 1.4918; p-Cl, Si, 
90/6-O,. 1.5102; m-Cl, Si, 82/4-O, 1.5095; p-F, Si, 71/10, 1.4745; m-F, Si, ::: 
71/l& 1.477O;pJ, Si, 94&O, 1.5600; II, Sn; 70/3.0,1.5410;p-Me, Sn, 79/2-O, 
1.5385; ti-$Ie, Sn, 85/3.0, 1.5387; p-Cl, Sn, .96/2-O, 1.5565; m-Cl, Sn, 85/1.0,-” 
1.5558; p-F, Sn, 81/4-O, 1.5260. 

The following new XCsH,CH,MMes compounds were prepared from the :: 
appropriate Grignard reagent; XC, H, CH, Mg&(Cl), and chlorotrimethylsikne ; 
or bromotrimethylstannae in ether: [X, M, b-p. (“C/mmHg), ng5] : m-Me, Si, I 
74/6-O,_ 1.4912 (Found: C, 74.3; H; 10.0. C, r H, s Si calcd.: C, 74.1; H, 10.2%); 
m-OMe, Si, 83/3.0, .1.5039 (Found: C, 68.0; H, 9.4. C,, H,sOSi calcd.: C, 
67.95; H, 9.35%); m-F, Sn, 60/1-O, 1.5272 (Found: C, 43.8; H, 5.6. 
C,,H,,FSn &cd.: C, 44.0; 5.55%); m-OMe, Sn, 80/O-6, l-5457 (Found: C, 
46.5; H, 6.5. C,,H,,OSn calcd.: C, 46.4; H, 6.4%). 

Renzyltriethybtannanes, YC, H, CH, SnEt, were prepared analogously 
from bromotriethylstannane: [Y, b.p. (“C/mmHg), nF]: H, 85/0.7, 1.5375; 
P-Mefnc), 90/0.8, 1.5352 (Found: C, 53.9; H, 7.8. C;,H,,Sn c&d.: C, 54.05; 
H, 7.8%); p-Cl(nc), 97/O-5, 1.5544 (Found: C, 47.0; H, 6.3; Cl, 9.9. 
C,sHerClSn &cd.: C, 47.1; H, 6.4; Cl, 10.1%). 

An in situ technique, in which a mixture of p-methoxybenzyl chloride and 
chlorotrimethylsilae or bromotrimethylstannane in ether was added to magne- 
sium turnings in boiling ether, was used to prepare p-MeOC, H,CH, SiMe, , b-p. 
88” /4.0 mmHg, nD ’ 5 1.5042 and p-MeOC, H, CH, SnMe, (nc), b.p. 86” /0.8 
ti&, nE5 1.5472 (Found: C, 46.6; H, 6.3. C,,H,sOSn calcd.: C, 46.6; H, 
6.4%;. 

All products Were checked for purity by GLC, NMR, and IR spectros- 

copy - 
Spectroscopic grade carbon tetrachloride was stored over molecular sieves 

(4.A). Benzene was dried over sodium wire, redistilled and stored over molecu- 
lar sieves. The IR. spectra of the compounds were measured as solutions in 
carbon tetrachloride co~ntaining 10% benzene as an aid to cell balancing as 
previously described [ 81. The integration of the- tis bands was performed as 
before. 163 and reproducibility errors in A S+ are +- 1. 

Results a& _discussion 

meta-Disubstituted benzenes 
: Equation (2) has been developed [S] to relate the integrated intensities of 

the us vibrations of meta-disubstituted benzenes to p: terms. 

A meta ” = 19000[(0~ 1)2 + (0: 2)2 + Q; 1 - 0”R 2]+ 340 (2) 

The results obtained are shown in Table 1. The 0:: values for CH,MMe, 
gronps .obtained from the monosuhstituted benzenes could be either positive or- ;.I 
negative. Plotting [(A - 340)/19000] %. against [t&O, 1)2 + (00,2)2 + 0: 1-u: 2]1* :; 

: : 
,:- 
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TABLE1 

SPECTRALDATAFORmeta-DISUBSTITUTEDBENZENES 

SubstItuent crg2 160011585 band Ab A.-340 ++ fm = 
1 2 Y GA= 

[ 1 19000 

CHZSIMe3 -Me -0.10 1606 99 1690 0.27 0.26 
1586 38 

Cl -0.22 1595 180 2975 0.37 0.36 

CH2 SnMe 3 

1568 
F -0.34 1614 

1587 
1678 

OMe -0.43 1608 
1599 
1592 
1580 

Me -0.10 1603 
1584 

Cl -0.22 1593 
1569 

F -0.34 1611 
1585 

OMe -0.43 1604 
1597 
1588 
1578 

60 
124 
158 

1;: 
213 
137 
137 
117 
48 

288 

2'o'l 
157 
200 
250 
156 
168 

4860 0.49 a.47 

6425 0.67 0.54- 0.57 d 

2170 0.31 0.32 

3730 0.42 0.41 

6140 0.54 0.52 

7485 0.61 0.58 - 0.62 d 

O.Br 

I I 0 I I I 

0.2 0.2 0.3 0.4 05. 0.6 0.7 
- ~~00,1)'+(u~2)~+~8~1'u~2)]"~ 

Fig. l-Plot of [(A - 340)~190003*egeinst [<a&)? +<0:2)~ + <&l*U~2)lHfor meta-substitutedben- 
zyltdmethylsilanes and m&a-substituted benzYltximethyl es. Thelineshownhasunitslope. 
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gave unit slope only if negative values were used as shown in Fig. 1. The 
negative values of (I z for CHa MMe, groups indicative of electron donation, are 
in agreement with the literature results [4] . The u E values derived from the 
me&x-series support a hyperconjugative mechanism of electron donation 
[2,3,4] since the intensities of ~1s bands in phenyl derivatives are not affected 
by the n-inductive effects [5]_ This latter effect was originally advocated by 
Kitching and Adcock [ 93 on the basis of 1 g F NMR measurements although on 
the basis of further experiments they are now reconsidering their position 
[lo]. Additional [4] recent evidence for the hyperconjugation mechanism has 
come from the photoelectron spectra and SCF-MO calculations on allylsilanes 
1111, from reaction rates.and charge transfer complexes 1121, from the large 
rotational barriers (< 5 kcal/mol) ‘and hyperfine coupling constants in free 
radicals p to metal groups [13], from UV spectra of nitrophenyl derivatives 
Cl41 9 and from the observation of the additional stability of carbonium ions 
112,151 and free radicals [13] p to metal groups. Although Kochi et al. [13] 
believe that two mechanisms, hyperconjugation and p-d: homoconjugation 
contribute to the magnitude of the hyperfine couplings, Symons [16] believes 
the latter is unnecessary. The present results are incompatible with p-d overlap 
because this interaction would be observed as electron donation to the metal. 

para-Disubstitu ted benzenes 
Table 2 lists the results for these compounds_ Equation (3) relates [17] the 

intensities of para-disubstituted benzenes to the 0: value of the substituents, 

A = 15000[c@ - 0:2 + Xl2 + 170 (3) 

where interaction between the substituents is measured by A. 
Interaction is expected between the donor substituents CH,MR, and the 

heavy halogens acting as d-orbital acceptors; increments of K, .utD ( = A) 
given in Table 2 where K, is a nieasure [11,18] of the tendency to accept 
electrons into d-orbitals. However, the corrected values (f, in Table 2) obtained 
still show considerable discrepancies compared to the experimental [(A - 
170)/150003 H values. 

For compounds with substituents other than the heavy halogens, the second 
substituent is always a resonance electron donor and the discrepancy (A) is 
always positive. Magnitudes of A are small for CH,SiMe,, (+ 0.03 to + O-04), 
increase for CHsSnMe, (+ 0.07 to + 0.12) and are large for CH,§.nEt, 
(+ 0.18). We believe that this pattern reflects the polarisability of these groups 
which are evidently less effective electron donors in electron-rich systems. The 
effects shown are consistent with hyperconjugative electron interaction 119,201 
and are analogous to the effects observed for alkyl groups para to. strong donors 
[X9,20] . 

For the heavy halogen compounds, the interpretation of the results is less 
easy because of the ambiguity in the sign of small values of [A - 170)/150003 Ih. 
It appears that d-electron acceptance by the halogen at least partially cancels the 
polarisability effects mentioned in the previous paragraph. 
mono-Substituted benzenes 

The 0: values obtained by l gF NMR spectroscopy [lo] are compared in 
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TABLE 3 

SUBSTITUENT CONSTANTS FOR BENZYL GROUPS 

&<IR) 

PhCH2 Sies -0.20 
PhCHq SnMel -0.26 

og<“F NMR) 

-0.20 
-0.23 

PhCH; SnEt; -0.285“ 

a New value. A = 1525, frequencies observed were 1596 and 1577 cm-‘_ 

Table 3 with the IR values. The low values for CH, SnMe, obtained by the 19F 
method is consistent with the polarisability concept discussed above. 
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